# **Basics of Computer Simulation**

Syllabus Number

4E206

Special Subjects
Elective 2 credit

# YOSHITANI, Naoharu

#### 1. Course Description

"Computer simulation" means to simulate behaviors or characteristics of actual systems by running computer programs. In the modern world with highly-developed economic, social, and production systems, computer simulation is indispensable for planning, analyzing, predicting or optimizing these systems.

In this course, students are required to use LMS and Scilab/Scicos, a free software for computer simulation and mathematical analysis.

Students are expected to acquire the knowledge and techniques related to DP2.

### 2. Course Objectives

Important contents to be learned in this course are:

- 1. Introduction to computer simulation, modeling principles
- 2. Introduction to Scilab/Scicos
- 3. Simulation of differential equations
- 4. Laplace transform and block diagrams for simulation
- 5. Probability distribution and stochastic systems
- 6. Simulation on Least Squares Method
- 7. Simulation of system optimization: linear/nonlinear programming

The first objective of the course is to learn and understand the basics of computer simulation and Scilab/Scicos.

The second objective is to develop mathematical models and block diagrams to simulate system behaviors with Scilab/Scicos.

The third objective is to simulate system optimization with Scilab or Microsoft Excel.

#### 3. Grading Policy

Grading policy is based on the answer reports to assignments A and B (30%), and on final examination at the campus (70%). After report submission, the correct answers to the assignments are sent to the students qualified for final examination.

#### 4. Textbook and Reference

Textbook

Hiroshi Hashimoto and Chiharu Ishii (橋本 洋志,石井 千春) Basics of Simulation with Scilab/Scicos, (SCilab/Scicosで学ぶシミュレーションの基礎) Ohm Publishing Co., ISBN 978-4-274-20487-6 (オーム社) Reference

none

#### 5. Requirements (Assignments)

It is necessary for students to install Scilab/Scicos in their PC. Windows OS is recommended.

This course uses LMS. Students are required to spend at least 30 hours for preparation study, review, and reports to assignments.

#### 6. Note

The contents of the course are helpful in applying computer simulation to various fields such as engineering, natural science and social science.

## 7. Schedule

| F = 1 | D . C .          |                  |                  | 1 1     | T . 11 CC 11 1      | /O ·   |
|-------|------------------|------------------|------------------|---------|---------------------|--------|
| [1]   | Basics of comput | er sımulatlon wi | ıtn matnematicai | models, | , install of Schab/ | Scicos |

- [2] Basic operation of Scilab/Scicos (1): chapter 2 of the textbook
- [3] Basic operation of Scilab/Scicos (2): chapter 3 of the textbook
- [4] Review of the basics of differentials and integrals
- [5] Review of mathematics and mathematics in Scilab: matrices, probability distributions

(section 4.1, 4.2 in the textbook)

- [6] Laplace and inverse Laplace transform (section 4.3 in the textbook)
- [7] Continuous-time and discrete-time model, transfer function, block diagram

(section 4.4.1, 4.4.2 in the textbook)

- [8] Model approximation based on least squares method (section 4.5.1, 4.5.2 in the textbook)
- [9] Mathematical model in natural science -- diffusion model (section 5.1 in the textbook)
- [10] Model of the spread of epidemic disease (section 5.2 in the textbook)
- [11] Predators-victims model (section 5.3 in the textbook)
- [12] Waiting queue (1) (section 6.5.1-6.5.3 in the textbook)
- [13] Waiting queue (2) (section 6.5.4 in the textbook)
- [14] Linear and nonlinear programming (1) (section 6.6 in the textbook)
- [15] Linear and nonlinear programming (2)